

[image: logo]

Probabilistic Estimation of Losses, Injuries, and Community resilience Under Natural disasters

pelicun is a Python package that provides tools for assessment of damage and losses due to natural hazards. It uses a stochastic damage and loss model that is based on the methodology described in FEMA P58 (FEMA, 2012). While FEMA P58 aims to assess the seismic performance of a building, with pelicun we want to develop a more versatile, hazard-agnostic tool that will eventually provide loss estimates for other types of assets (e.g. bridges, facilities, pipelines) and lifelines. The underlying loss model was designed with these objectives in mind and it will be gradually extended to have such functionality.

Currently, the scenario assessment from the FEMA P58 methodology is built-in the tool. Detailed documentation of the available methods and their use is available at http://pelicun.readthedocs.io

	Overview

	Installation

	Features

	Copyright and license

	API documentation

License

pelicun is distributed under the BSD 3-Clause license, see LICENSE.

Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No. 1612843. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Contact

Adam Zsarnóczay, NHERI SimCenter, Stanford University, adamzs@stanford.edu

Indices and tables

	Index

	Module Index

	Search Page

Overview

The current version of pelicun can be used to quantifiy lossess from an earthquake scenario in the form of decision variables. This functionality is typically utilized for performance based engineering or seismic risk assessment. There are several steps of seismic performance assessment that pelcicun can help with:

	Describe the joint distribution of seismic response. The response of a structure or other type of asset to an earthquake is typically described by so-called engineering demand parameters (EDPs). pelicun provides methods that take a finite number of EDP vectors and find a multivarite distribution that describes the joint distribution of EDP data well.

	Define the damage and loss model of a building. The component damage and loss data from FEMA P58 is provided with pelicun. This makes it easy to define building components without having to provide all the data manually. The stochastic damage and loss model is designed to facilitate modeling correlations between several parameters of the damage and loss model.

	Estimate component damages. Given a damage and loss model and the joint distribution of EDPs, pelicun provides methods to estimate the quantity of damaged components and collapses.

	Estimate consequences. Using information about collapses and component damages, the following consequences can be estimated with the loss model: reconstruction cost and time, unsafe placarding (red tag), injuries and fatalities.

Installation

pelicun is available for Python 2.7 and Python 3.5+ at the Python Package Index (PyPI). You can simply install it using pip as follows:

pip install pelicun

Requirements

The following packages are required for pelicun:

	package

	minimum version

	numpy

	1.15.1

	scipy

	1.1

	pandas

	0.20

We recommend installing the Anaconda Python distribution because these packages and many other useful ones are available there.

Features

The following table outlines the features that are currently available in the tool and the requirements that will drive future development. We welcome suggestions for useful features that are missing from the list below. The priority column provides information about the relative importance of features planned for a given release: M - mandatory, D - desirable, O - optional, P - possible.

List of features

	ID

	description

	priority

	available

	planned

	1

	Assessment Methods

	
	
	

	1.1

	Perform component-based (e.g. FEMA-P58 style) loss assessment for earthquake scenarios.

	M

	1.0

	

	1.2

	Perform component-group-based (e.g HAZUS style) loss assessment for earthquake scenarios.

	D

	
	1.1

	1.3

	Perform loss assessment for hurricane scenarios based on the HAZUS hurricane methodology.

	D

	
	1.2

	1.4

	Perform downtime estimation using the ARUP’s REDi methodology.

	D

	
	1.2

	1.5

	Perform time-based assessment for seismic hazard.

	M

	
	1.3

	2

	Control

	
	
	

	2.1

	Specify number of realizations.

	M

	1.0

	

	2.2

	Specify log-standard deviation increase to consider additional sources of uncertainty.

	M

	1.0

	

	2.3

	Pick the decision variables to calculate.

	D

	1.0

	

	2.4

	Specify the number of inhabitants on each floor and their temporal distribution.

	D

	1.0

	

	2.5

	Specify the basic boundary conditions of repairability.

	D

	1.0

	

	2.6

	Control collapse through EDP limits.

	D

	1.0

	

	2.7

	Specify the replacement cost and time for the asset.

	M

	1.0

	

	2.8

	Specify EDP boundaries that define the domain with reliable simulation results.

	D

	1.0

	

	2.9

	Specify collapse modes and characterize the corresponding likelihood of injuries.

	D

	1.0

	

	3

	Component DL information

	
	
	

	3.1

	Make the component damage and loss data from FEMA P58 (1st ed.) available in the tool.

	M

	1.0

	

	3.2

	Facilitate the use of custom components for loss assessment.

	D

	1.0

	

	3.3

	Enable different component quantities for each floor in each direction.

	D

	1.0

	

	3.4

	Enable fine control over quantities of identical groups of components within a PG.

	D

	1.0

	

	3.5

	Create a generic JSON data format to store component DL data.

	D

	
	1.1

	3.6

	Convert FEMA P58 and HAZUS component DL data to the new JSON format.

	D

	
	1.1

	3.7

	Extend the list of available decision variables with those from HAZUS

	D

	
	1.2

	3.8

	Extend the list of available decision variables with those from REDi

	D

	
	1.2

	4

	Stochastic loss model

	
	
	

	4.1

	Enable control of basic dependencies between logically similar parts of the model.

	D

	1.0

	

	4.2

	Enable control of basic dependencies between reconstruction cost and reconstruction time.

	D

	1.0

	

	4.3

	Enable control of basic dependencies between different levels of injuries.

	D

	1.0

	

	4.4

	Extend the model to include the description of the hazard (earthquake and hurricane).

	D

	
	1.3

	4.5

	Enable finer control of dependencies through intermediate levels of correlation.

	D

	
	1.3

	5

	Response estimation

	
	
	

	5.1

	Fit a multivariate random distribution to samples of EDPs from response simulation.

	M

	1.0

	

	5.2

	Allow estimation of EDPs using empirical functions instead of simulation results.

	D

	
	1.2

	5.3

	Perform EDP estimation using the empirical functions in the HAZUS earthquake method

	D

	
	1.2

Releases

Minor releases are planned to follow quarterly cycles while major releases are planned at the end of the third quarter every year:

Release schedule

	version

	planned release date

	1.0

	Oct 2018

	1.1

	Dec 2018

	1.2

	March 2019

	1.3

	June 2019

	2.0

	Sept 2019

Copyright and license

The pelicun Python package is copyright through Leland Stanford Junior
University and The Regents of the University of California.

The software is distributed under the BSD 3-Clause License.

pelicun leverages several third-party software packages, which have separate licensing policies.

Copyright

Copyright (c) 2018, Leland Stanford Junior University
Copyright (c) 2018, The Regents of the University of California

BSD 3-Caluse license

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

API documentation:

Modules

	base

	control

	file_io

	model

	uq

pelicun.base module

This module defines constants, basic classes and methods for pelicun.

pelicun.control module

This module has classes and methods that control the loss assessment.

Contents

	Assessment()

	A high-level class that collects features common to all supported loss assessment methods.

	FEMA_P58_Assessment([inj_lvls])

	An Assessment class that implements the loss assessment method in FEMA P58.

	
class pelicun.control.Assessment

	Bases: object

A high-level class that collects features common to all supported loss
assessment methods. This class will only rarely be called directly when
using pelicun.

	Attributes

	
	beta_additional

	Calculate the total additional uncertainty for post processing.

Methods

	calculate_damage()

	Characterize the damage experienced in each random event realization.

	calculate_losses()

	Characterize the consequences of damage in each random event realization.

	define_loss_model()

	Create the stochastic loss model based on the inputs provided earlier.

	define_random_variables()

	Define the random variables used for loss assessment.

	read_inputs(path_DL_input, path_EDP_input[, …])

	Read and process the input files to describe the loss assessment task.

	write_outputs()

	Export the results.

	
beta_additional

	Calculate the total additional uncertainty for post processing.

The total additional uncertainty is the squared root of sum of squared
uncertainties corresponding to ground motion and modeling.

	Returns

	
	beta_tot: float

	The total uncertainty (logarithmic EDP standard deviation) to add
to the EDP distribution.

	
read_inputs(path_DL_input, path_EDP_input, verbose=False)

	Read and process the input files to describe the loss assessment task.

	Parameters

	
	path_DL_input: string

	Location of the Damage and Loss input file. The file is expected to
be a JSON with data stored in a standard format described in detail
in the Input section of the documentation.

	path_EDP_input: string

	Location of the EDP input file. The file is expected to follow the
output formatting of Dakota. The Input section of the documentation
provides more information about the expected formatting.

	verbose: boolean, default: False

	If True, the method echoes the information read from the files.
This can be useful to ensure that the information in the file is
properly read by the method.

	
define_random_variables()

	Define the random variables used for loss assessment.

	
define_loss_model()

	Create the stochastic loss model based on the inputs provided earlier.

	
calculate_damage()

	Characterize the damage experienced in each random event realization.

	
calculate_losses()

	Characterize the consequences of damage in each random event realization.

	
write_outputs()

	Export the results.

	
class pelicun.control.FEMA_P58_Assessment(inj_lvls=2)

	Bases: pelicun.control.Assessment

An Assessment class that implements the loss assessment method in FEMA P58.

	Attributes

	
	beta_additional

	Calculate the total additional uncertainty for post processing.

Methods

	aggregate_results()

	

	calculate_damage()

	Characterize the damage experienced in each random event realization.

	calculate_losses()

	Characterize the consequences of damage in each random event realization.

	define_loss_model()

	Create the stochastic loss model based on the inputs provided earlier.

	define_random_variables()

	Define the random variables used for loss assessment.

	read_inputs(path_DL_input, path_EDP_input[, …])

	Read and process the input files to describe the loss assessment task.

	write_outputs()

	

	
read_inputs(path_DL_input, path_EDP_input, path_CMP_data=None, path_POP_data=None, verbose=False)

	Read and process the input files to describe the loss assessment task.

	Parameters

	
	path_DL_input: string

	Location of the Damage and Loss input file. The file is expected to
be a JSON with data stored in a standard format described in detail
in the Input section of the documentation.

	path_EDP_input: string

	Location of the EDP input file. The file is expected to follow the
output formatting of Dakota. The Input section of the documentation
provides more information about the expected formatting.

	path_CMP_data: string, default: None

	Location of the folder with component damage and loss data files.
The default None value triggers the use of the FEMA P58 first
edition data from pelicun/resources/FEMA P58 first edition/DL json/

	path_POP_data: string, default: None

	Location of the JSON file that describes the temporal distribution
of the population per the FEMA P58 method. The default None value
triggers the use of the FEMA P58 first edition distribution from
pelicun/resources/FEMA P58 first edition/population.json.

	verbose: boolean, default: False

	If True, the method echoes the information read from the files.
This can be useful to ensure that the information in the file is
properly read by the method.

	
define_random_variables()

	Define the random variables used for loss assessment.

Following the FEMA P58 methodology, the groups of parameters below are
considered random. Simple correlation structures within each group can
be specified through the DL input file. The random decision variables
are only created and used later if those particular decision variables
are requested in the input file.

	Demand (EDP) distribution

Describe the uncertainty in the demands. Unlike other random variables,
the EDPs are characterized by the EDP input data provided earlier. All
EDPs are handled in one multivariate lognormal distribution. If more
than one sample is provided, the distribution is fit to the EDP data.
Otherwise, the provided data point is assumed to be the median value
and the additional uncertainty prescribed describes the dispersion. See
_create_RV_demands() for more details.

	Component quantities

Describe the uncertainty in the quantity of components in each
Performance Group. All Fragility Groups are handled in the same
multivariate distribution. Consequently, correlation between various
groups of component quantities can be specified. See
_create_RV_quantities() for details.

	Fragility EDP limits

Describe the uncertainty in the EDP limit that corresponds to
exceedance of each Damage State. EDP limits are grouped by Fragility
Groups. Consequently, correlation between fragility limits are
currently are limited within Fragility Groups. See
_create_RV_fragilities() for details.

	Reconstruction cost and time

Describe the uncertainty in the cost and duration of reconstruction of
each component conditioned on the damage state of the component. All
Fragility Groups are handled in the same multivariate distribution.
Consequently, correlation between various groups of component
reconstruction time and cost estimates can be specified. See
_create_RV_repairs() for details.

	Damaged component proportions that trigger a red tag

Describe the uncertainty in the amount of damaged components needed to
trigger a red tag for the building. All Fragility Groups are handled in
the same multivariate distribution. Consequently, correlation between
various groups of component proportion limits can be specified. See
_create_RV_red_tags() for details.

	Injuries

Describe the uncertainty in the proportion of people in the affected
area getting injuries exceeding a certain level of severity. FEMA P58
uses two severity levels: injury and fatality. Both levels for all
Fragility Groups are handled in the same multivariate distribution.
Consequently, correlation between various groups of component injury
expectations can be specified. See _create_RV_injuries() for details.

	
define_loss_model()

	Create the stochastic loss model based on the inputs provided earlier.

Following the FEMA P58 methodology, the components specified in the
Damage and Loss input file are used to create Fragility Groups. Each
Fragility Group corresponds to a component that might be present in
the building at several locations. See _create_fragility_groups() for
more details about the creation of Fragility Groups.

	
calculate_damage()

	Characterize the damage experienced in each random event realization.

First, the time of the event (month, weekday/weekend, hour) is randomly
generated for each realization. Given the event time, the number of
people present at each floor of the building is calculated.

Second, the realizations that led to collapse are filtered. See
_calc_collapses() for more details on collapse estimation.

Finally, the realizations that did not lead to building collapse are
further investigated and the quantities of components in each damage
state are estimated. See _calc_damage() for more details on damage
estimation.

	
calculate_losses()

	Characterize the consequences of damage in each random event realization.

For the sake of efficiency, only the decision variables requested in
the input file are estimated. The following consequences are handled by
this method:

Reconstruction time and cost
Estimate the irrepairable cases based on residual drift magnitude and
the provided irrepairable drift limits. Realizations that led to
irrepairable damage or collapse are assigned the replacement cost and
time of the building when reconstruction cost and time is estimated.
Repairable cases get a cost and time estimate for each Damage State in
each Performance Group. For more information about estimating
irrepairability see _calc_irrepairable() and reconstruction cost and
time see _calc_repair_cost_and_time() methods.

Injuries
Collapse-induced injuries are based on the collapse modes and
corresponding injury characterization. Injuries conditioned on no
collapse are based on the affected area and the probability of
injuries of various severity specified in the component data file. For
more information about estimating injuries conditioned on collapse and
no collapse, see _calc_collapse_injuries() and
_calc_non_collapse_injuries, respecitvely.

Red Tag
The probability of getting an unsafe placard or red tag is a function
of the amount of damage experienced in various Damage States for each
Performance Group. The damage limits that trigger an unsafe placard are
specified in the component data file. For more information on
assigning red tags to realizations see the _calc_red_tag() method.

	
aggregate_results()

	

	
write_outputs()

	

	
class pelicun.control.HAZUS_Assessment(inj_lvls=4)

	Bases: pelicun.control.Assessment

An Assessment class that implements the loss assessment method in HAZUS.

	Attributes

	
	beta_additional

	Calculate the total additional uncertainty for post processing.

Methods

	aggregate_results()

	

	calculate_damage()

	Characterize the damage experienced in each random event realization.

	calculate_losses()

	Characterize the consequences of damage in each random event realization.

	define_loss_model()

	Create the stochastic loss model based on the inputs provided earlier.

	define_random_variables()

	Define the random variables used for loss assessment.

	read_inputs(path_DL_input, path_EDP_input[, …])

	Read and process the input files to describe the loss assessment task.

	write_outputs()

	Export the results.

	
read_inputs(path_DL_input, path_EDP_input, path_CMP_data=None, path_POP_data=None, verbose=False)

	Read and process the input files to describe the loss assessment task.

	Parameters

	
	path_DL_input: string

	Location of the Damage and Loss input file. The file is expected to
be a JSON with data stored in a standard format described in detail
in the Input section of the documentation.

	path_EDP_input: string

	Location of the EDP input file. The file is expected to follow the
output formatting of Dakota. The Input section of the documentation
provides more information about the expected formatting.

	path_CMP_data: string, default: None

	Location of the folder with component damage and loss data files.
The default None value triggers the use of the HAZUS data from
pelicun/resources/HAZUS MH 2.1/DL json/.

	path_POP_data: string, default: None

	Location of the JSON file that describes the temporal distribution
of the population per the HAZUS method. The default None value
triggers the use of the HAZUS data from
pelicun/resources/HAZUS MH 2.1/population.json.

	verbose: boolean, default: False

	If True, the method echoes the information read from the files.
This can be useful to ensure that the information in the file is
properly read by the method.

	
define_random_variables()

	Define the random variables used for loss assessment.

Following the HAZUS methodology, only the groups of parameters below
are considered random. Correlations within groups are not considered
because each Fragility Group has only one Performance Group with a
in this implementation.

	Demand (EDP) distribution

Describe the uncertainty in the demands. Unlike other random variables,
the EDPs are characterized by the EDP input data provided earlier. All
EDPs are handled in one multivariate lognormal distribution. If more
than one sample is provided, the distribution is fit to the EDP data.
Otherwise, the provided data point is assumed to be the median value
and the additional uncertainty prescribed describes the dispersion. See
_create_RV_demands() for more details.

	Fragility EDP limits

Describe the uncertainty in the EDP limit that corresponds to
exceedance of each Damage State. EDP limits are grouped by Fragility
Groups. See _create_RV_fragilities() for details.

	
define_loss_model()

	Create the stochastic loss model based on the inputs provided earlier.

Following the HAZUS methodology, the component assemblies specified in
the Damage and Loss input file are used to create Fragility Groups.
Each Fragility Group corresponds to one assembly that represents every
component of the given type in the structure. See
_create_fragility_groups() for more details about the creation of
Fragility Groups.

	
calculate_damage()

	Characterize the damage experienced in each random event realization.

First, the time of the event (month, weekday/weekend, hour) is randomly
generated for each realization. Given the event time, the number of
people present at each floor of the building is calculated.

Next, the quantities of components in each damage state are estimated.
See _calc_damage() for more details on damage estimation.

	
calculate_losses()

	Characterize the consequences of damage in each random event realization.

For the sake of efficiency, only the decision variables requested in
the input file are estimated. The following consequences are handled by
this method for a HAZUS assessment:

Reconstruction time and cost
Get a cost and time estimate for each Damage State in each Performance
Group. For more information about estimating reconstruction cost and
time see _calc_repair_cost_and_time() methods.

Injuries
The number of injuries are based on the probability of injuries of
various severity specified in the component data file. For more
information about estimating injuries _calc_non_collapse_injuries.

	
aggregate_results()

	

pelicun.file_io module

This module has classes and methods that handle file input and output.

Contents

	read_SimCenter_DL_input(input_path[, …])

	Read the damage and loss input information from a json file.

	read_SimCenter_EDP_input(input_path[, …])

	Read the EDP input information from a text file with a tabular structure.

	read_population_distribution(path_POP, occupancy)

	Read the population distribution from an external json file.

	read_component_DL_data(path_CMP, comp_info)

	Read the damage and loss data for the components of the asset.

	write_SimCenter_DL_output(output_path, output_df)

	

	
pelicun.file_io.read_SimCenter_DL_input(input_path, assessment_type='P58', verbose=False)

	Read the damage and loss input information from a json file.

The SimCenter in the function name refers to having specific fields
available in the file. Such a file is automatically prepared by the
SimCenter PBE Application, but it can also be easily manipulated or created
manually. The accepted input fields are explained in detail in the Input
section of the documentation.

	Parameters

	
	input_path: string

	Location of the DL input json file.

	assessment_type: {‘P58’, ‘HAZUS’}

	Tailors the warnings and verifications towards the type of assessment.
default: ‘P58’.

	verbose: boolean

	If True, the function echoes the information read from the file. This
can be useful to ensure that the information in the file is properly
read by the method.

	Returns

	
	data: dict

	A dictionary with all the damage and loss data.

	
pelicun.file_io.read_SimCenter_EDP_input(input_path, EDP_kinds=('PID', 'PFA'), units={'PFA': 1.0, 'PID': 1.0}, verbose=False)

	Read the EDP input information from a text file with a tabular structure.

The SimCenter in the function name refers to having specific columns
available in the file. Currently, the expected formatting follows the
output formatting of Dakota that is applied for the dakotaTab.out. When
using pelicun with the PBE Application, such a dakotaTab.out is
automatically generated. The Input section of the documentation provides
more information about the expected formatting of the EDP input file.

	Parameters

	
	input_path: string

	Location of the EDP input file.

	EDP_kinds: tuple of strings, default: (‘PID’, ‘PFA’)

	Collection of the kinds of EDPs in the input file. The default pair of
‘PID’ and ‘PFA’ can be replaced or extended by any other EDPs.

	units: dict, default: {‘PID’:1., ‘PFA’:1}

	Defines the unit conversion that shall be applied to the EDP values.

	verbose: boolean

	If True, the function echoes the information read from the file. This
can be useful to ensure that the information in the file is properly
read by the method.

	Returns

	
	data: dict

	A dictionary with all the EDP data.

	
pelicun.file_io.read_population_distribution(path_POP, occupancy, verbose=False)

	Read the population distribution from an external json file.

The population distribution is expected in a format used in FEMA P58, but
the list of occupancy categories can be extended beyond those available
in that document. The population distributions for the occupancy categories
from FEMA P58 are provided with pelicun in the population.json in the
resources folder.

	Parameters

	
	path_POP: string

	Location of the population distribution json file.

	occupancy: string

	Identifies the occupancy category. There must be a matching category in
the population distribution json file.

	verbose: boolean

	If True, the function echoes the information read from the file. This
can be useful to ensure that the information in the file is properly
read by the method.

	Returns

	
	data: dict

	A dictionary with the population distribution data.

	
pelicun.file_io.read_component_DL_data(path_CMP, comp_info, verbose=False)

	Read the damage and loss data for the components of the asset.

DL data for each component is assumed to be stored in a JSON file following
the DL file format specified by SimCenter. The name of the file is the ID
(key) of the component in the comp_info dictionary. Besides the filename,
the comp_info dictionary is also used to get other pieces of data about the
component that is not available in the JSON files. Therefore, the following
attributes need to be provided in the comp_info: [‘quantities’,
‘csg_weights’, ‘dirs’, ‘kind’, ‘distribution’, ‘cov’, ‘unit’, ‘locations’]
Further information about these attributes is available in the Input
section of the documentation.

	Parameters

	
	path_CMP: string

	Location of the folder that contains the component data in JSON files.

	comp_info: dict

	Dictionary with additional information about the components.

	verbose: boolean

	If True, the function echoes the information read from the files. This
can be useful to ensure that the information in the files is properly
read by the method.

	Returns

	
	data: dict

	A dictionary with damage and loss data for each component.

	
pelicun.file_io.convert_P58_data_to_json(data_dir, target_dir)

	Create JSON data files from publicly available P58 data.

FEMA P58 damage and loss information is publicly available in an Excel
spreadsheet and also in a series of XML files as part of the PACT tool.
Those files are copied to the resources folder in the pelicun repo. Here
we collect the available information on Fragility Groups from those files
and save the damage and loss data in the common SimCenter JSON format.

A large part of the Fragility Groups in FEMA P58 do not have complete
damage and loss information available. These FGs are clearly marked with
an incomplete flag in the JSON file and the ‘Undefined’ value highlights
the missing pieces of information.

	Parameters

	
	data_dir: string

	Path to the folder with the FEMA P58 Excel file and a ‘DL xml’
subfolder in it that contains the XML files.

	target_dir: string

	Path to the folder where the JSON files shall be saved.

	
pelicun.file_io.create_HAZUS_json_files(data_dir, target_dir)

	Create JSON data files from publicly available HAZUS data.

HAZUS damage and loss information is publicly available in the technical
manuals. The relevant tables have been converted into a JSON input file
(hazus_data_eq.json) that is stored in the ‘resources/HAZUS MH 2.1’ folder
in the pelicun repo. Here we read that file (or a file of similar format)
and produce damage and loss data for Fragility Groups in the common
SimCenter JSON format.

HAZUS handles damage and losses at the assembly level differentiating only
structural and two types of non-structural component assemblies. In this
implementation we consider each of those assemblies a Fragility Group
and describe their damage and its consequences in a FEMA P58-like framework
but using the data from the HAZUS Technical Manual.

	Parameters

	
	data_dir: string

	Path to the folder with the hazus_data_eq JSON file.

	target_dir: string

	Path to the folder where the results shall be saved. The population
distribution file will be saved here, the DL JSON files will be saved
to a ‘DL json’ subfolder.

pelicun.model module

This module has classes and methods that define and access the model used for
loss assessment.

Contents

	FragilityFunction(EDP_limit)

	Describes the relationship between asset response and damage.

	ConsequenceFunction(DV_median, DV_distribution)

	Describes the relationship between damage and a decision variable.

	DamageState(ID[, weight, description, …])

	Characterizes one type of damage that corresponds to a particular DSG.

	DamageStateGroup(ID, DS_set, DS_set_kind)

	A set of similar component damages that are controlled by the same EDP.

	PerformanceGroup(ID, location, quantity, …)

	A group of similar components that experience the same demands.

	FragilityGroup(ID, kind, demand_type, …[, …])

	Groups a set of similar components from a loss-assessment perspective.

	prep_constant_median_DV(median)

	Returns a constant median Decision Variable (DV) function.

	prep_bounded_linear_median_DV(median_max, …)

	Returns a bounded linear median Decision Variable (DV) function.

	
class pelicun.model.FragilityFunction(EDP_limit)

	Bases: object

Describes the relationship between asset response and damage.

Asset response is characterized by a Demand value that represents an
engineering demand parameter (EDP). Only a scalar EDP is supported
currently. The damage is characterized by a set of DamageStateGroup (DSG)
objects. For each DSG, the corresponding EDP limit (i.e. the EDP at which
the asset is assumed to experience damage described by the DSG) is
considered uncertain; hence, it is described by a random variable. The
random variables that describe EDP limits for the set of DSGs are not
independent.

We assume that the EDP limit will be approximated by a normal or lognormal
distribution for each DSG and these variables together form a multivariate
normal distribution. Following common practice, the correlation between
variables is assumed perfect by default, but the framework allows the
users to explore other, more realistic options.

	Parameters

	
	EDP_limit: RandomVariableSubset

	A multidimensional random variable that might be defined as a subset
of a bigger correlated group of variables or a complete set of
variables created only for this Fragility Function (FF). The number of
dimensions shall be equal to the number of DSGs handled by the
FF.

Methods

	DSG_given_EDP(EDP[, force_resampling])

	Given an EDP, get a damage level based on the fragility function.

	P_exc(EDP, DSG_ID)

	Return the probability of damage exceedance.

	
P_exc(EDP, DSG_ID)

	Return the probability of damage exceedance.

Calculate the probability of exceeding the damage corresponding to the
DSG identified by the DSG_ID conditioned on a particular EDP value.

	Parameters

	
	EDP: float scalar or ndarray

	Single EDP or numpy array of EDP values.

	DSG_ID: int

	Identifies the conditioning DSG. The DSG numbering is 1-based,
because zero typically corresponds to the undamaged state.

	Returns

	
	P_exc: float scalar or ndarray

	DSG exceedance probability at the given EDP point(s).

	
DSG_given_EDP(EDP, force_resampling=False)

	Given an EDP, get a damage level based on the fragility function.

The damage is evaluated by sampling the joint distribution of
fragilities corresponding to all possible damage levels and checking
which damage level the given EDP falls into. This approach allows for
efficient damage state evaluation for a large number of EDP
realizations.

	Parameters

	
	EDP: float scalar or ndarray or Series

	Single EDP, or numpy array or pandas Series of EDP values.

	force_resampling: bool, optional, default: False

	If True, the probability distribution is resampled before
evaluating the damage for each EDP. This is not recommended if the
fragility functions are correlated with other sources of
uncertainty because those variables will also be resampled in this
case. If False, which is the default approach, we assume that
the random variable has already been sampled and the number of
samples greater or equal to the number of EDP values.

	Returns

	
	DSG_ID: Series

	Identifies the damage that corresponds to the given EDP. A DSG_ID
of 0 means no damage.

	
pelicun.model.prep_constant_median_DV(median)

	Returns a constant median Decision Variable (DV) function.

	Parameters

	
	median: float

	The median DV for a consequence function with fixed median.

	Returns

	
	f: callable

	A function that returns the constant median DV for all component
quantities.

	
pelicun.model.prep_bounded_linear_median_DV(median_max, median_min, quantity_lower, quantity_upper)

	Returns a bounded linear median Decision Variable (DV) function.

The median DV equals the min and max values when the quantity is
outside of the prescribed quantity bounds. When the quantity is within the
bounds, the returned median is calculated by a linear function with a
negative slope between max and min values.

	Parameters

	
	median_max: float, optional

	

	median_min: float, optional

	Minimum and maximum limits that define the bounded_linear median DV
function.

	quantity_lower: float, optional

	

	quantity_upper: float, optional

	Lower and upper bounds of component quantity that define the
bounded_linear median DV function.

	Returns

	
	f: callable

	A function that returns the median DV given the quantity of damaged
components.

	
class pelicun.model.ConsequenceFunction(DV_median, DV_distribution)

	Bases: object

Describes the relationship between damage and a decision variable.

Indicates the distribution of a quantified Decision Variable (DV)
conditioned on a component, an element, or the system reaching a given
damage state (DS). DV can be reconstruction cost, repair time, casualties,
injuries, etc. Its distribution might depend on the quantity of damaged
components.

	Parameters

	
	DV_median: callable

	Describes the median DV as an f(quantity) function of the total
quantity of damaged components. Use the prep_constant_median_DV, and
prep_bounded_linear_median_DV helper functions to conveniently
prescribe the typical FEMA P-58 functions.

	DV_distribution: RandomVariableSubset

	A one-dimensional random variable (or a one-dimensional subset of a
multi-dimensional random variable) that characterizes the uncertainty
in the DV. The distribution shall be normalized by the median DV (i.e.
the RVS is expected to have a unit median). Truncation can be used to
prescribe lower and upper limits for the DV, such as the (0,1) domain
needed for red tag evaluation.

Methods

	median([quantity])

	Return the value of the median DV.

	sample_unit_DV([quantity, sample_size, …])

	Sample the decision variable quantity per component unit.

	
median(quantity=None)

	Return the value of the median DV.

The median DV corresponds to the component damage state (DS). If the
damage consequence depends on the quantity of damaged components, the
total quantity of damaged components shall be specified through the
quantity parameter.

	Parameters

	
	quantity: float scalar or ndarray, optional

	Total quantity of damaged components that determines the magnitude
of median DV. Not needed for consequence functions with a fixed
median DV.

	Returns

	
	median: float scalar or ndarray

	A single scalar for fixed median; a scalar or an array depending on
the shape of the quantity parameter for bounded_linear median.

	
sample_unit_DV(quantity=None, sample_size=1, force_resampling=False)

	Sample the decision variable quantity per component unit.

The Unit Decision Variable (UDV) corresponds to the component Damage
State (DS). It shall be multiplied by the quantity of damaged
components to get the total DV that corresponds to the quantity of the
damaged components in the asset. If the DV depends on the total
quantity of damaged components, that value shall be specified through
the quantity parameter.

	Parameters

	
	quantity: float scalar, ndarray or Series, optional, default: None

	Total quantity of damaged components that determines the magnitude
of median DV. Not needed for consequence functions with a fixed
median DV.

	sample_size: int, optional, default: 1

	Number of samples drawn from the DV distribution. The default value
yields one sample. If quantity is an array with more than one
element, the sample_size parameter is ignored.

	force_resampling: bool, optional, default: False

	If True, the DV distribution (and the corresponding RV if there
are correlations) is resampled even if there are samples already
available. This is not recommended if the DV distribution is
correlated with other sources of uncertainty because those
variables will also be resampled in this case. If False, which is
the default approach, we assume that the random variable has
already been sampled and the number of samples is greater or equal
to the number of samples requested.

	Returns

	
	unit_DV: float scalar or ndarray

	Unit DV samples.

	
class pelicun.model.DamageState(ID, weight=1.0, description='', repair_cost_CF=None, reconstruction_time_CF=None, injuries_CF_set=None, affected_area=0.0, red_tag_CF=None)

	Bases: object

Characterizes one type of damage that corresponds to a particular DSG.

The occurrence of damage is evaluated at the DSG. The DS describes one of
the possibly several types of damages that belong to the same DSG and the
consequences of such damage.

	Parameters

	
	ID:int

	

	weight: float, optional, default: 1.0

	Describes the probability of DS occurrence, conditioned on the damage
being in the DSG linked to this DS. This information is only used for
DSGs with multiple DS corresponding to them. The weights of the set of
DS shall sum up to 1.0 if they are mutually exclusive. When the set of
DS occur simultaneously, the sum of weights typically exceeds 1.0.

	description: str, optional

	Provides a short description of the damage state.

	affected_area: float, optional, default: 0.

	Defines the area over which life safety hazards from this DS exist.

	repair_cost_CF: ConsequenceFunction, optional

	A consequence function that describes the cost necessary to restore the
component to its pre-disaster condition.

	reconstruction_time_CF: ConsequenceFunction, optional

	A consequence function that describes the time, necessary to repair the
damaged component to its pre-disaster condition.

	injuries_CF_set: ConsequenceFunction array, optional

	A set of consequence functions; each describes the number of people
expected to experience injury of a particular severity when the
component is in this DS. Any number of injury-levels can be considered.

	red_tag_CF: ConsequenceFunction, optional

	A consequence function that describes the proportion of components
(within a Performance Group) that needs to be damaged to trigger an
unsafe placard (i.e. red tag) for the building during post-disaster
inspection.

	Attributes

	
	description

	Return the damage description.

	weight

	Return the weight of DS among the set of damage states in the DSG.

Methods

	red_tag_dmg_limit([sample_size])

	Sample the red tag consequence function and return the proportion of components that needs to be damaged to trigger a red tag.

	unit_injuries([severity_level, sample_size])

	Sample the injury consequence function that corresponds to the specified level of severity and return the injuries per component unit.

	unit_reconstruction_time([quantity, sample_size])

	Sample the reconstruction time distribution and return the unit reconstruction times.

	unit_repair_cost([quantity, sample_size])

	Sample the repair cost distribution and return the unit repair costs.

	
description

	Return the damage description.

	
weight

	Return the weight of DS among the set of damage states in the DSG.

	
unit_repair_cost(quantity=None, sample_size=1, **kwargs)

	Sample the repair cost distribution and return the unit repair costs.

The unit repair costs shall be multiplied by the quantity of damaged
components to get the total repair costs for the components in this DS.

	Parameters

	
	quantity: float scalar, ndarray or Series, optional, default: None

	Total quantity of damaged components that determines the median
repair cost. Not used for repair cost models with fixed median.

	sample_size: int, optional, default: 1

	Number of samples drawn from the repair cost distribution. The
default value yields one sample.

	Returns

	
	unit_repair_cost: float scalar or ndarray

	Unit repair cost samples.

	
unit_reconstruction_time(quantity=None, sample_size=1, **kwargs)

	Sample the reconstruction time distribution and return the unit
reconstruction times.

The unit reconstruction times shall be multiplied by the quantity of
damaged components to get the total reconstruction time for the
components in this DS.

	Parameters

	
	quantity: float scalar, ndarray or Series, optional, default: None

	Total quantity of damaged components that determines the magnitude
of median reconstruction time. Not used for reconstruction time
models with fixed median.

	sample_size: int, optional, default: 1

	Number of samples drawn from the reconstruction time distribution.
The default value yields one sample.

	Returns

	
	unit_reconstruction_time: float scalar or ndarray

	Unit reconstruction time samples.

	
red_tag_dmg_limit(sample_size=1, **kwargs)

	Sample the red tag consequence function and return the proportion of
components that needs to be damaged to trigger a red tag.

The red tag consequence function is assumed to have a fixed median
value that does not depend on the quantity of damaged components.

	Parameters

	
	sample_size: int, optional, default: 1

	Number of samples drawn from the red tag consequence distribution.
The default value yields one sample.

	Returns

	
	red_tag_trigger: float scalar or ndarray

	Samples of damaged component proportions that trigger a red tag.

	
unit_injuries(severity_level=0, sample_size=1, **kwargs)

	Sample the injury consequence function that corresponds to the
specified level of severity and return the injuries per component unit.

The injury consequence function is assumed to have a fixed median
value that does not depend on the quantity of damaged components (i.e.
the number of injuries per component unit does not change with the
quantity of components.)

	Parameters

	
	severity_level: int, optional, default: 1

	Identifies which injury consequence to sample. The indexing of
severity levels is zero-based.

	sample_size: int, optional, default: 1

	Number of samples drawn from the injury consequence distribution.
The default value yields one sample.

	Returns

	
	unit_injuries: float scalar or ndarray

	Unit injury samples.

	
class pelicun.model.DamageStateGroup(ID, DS_set, DS_set_kind)

	Bases: object

A set of similar component damages that are controlled by the same EDP.

Damages are described in detail by the set of Damage State objects.
Damages in a DSG are assumed to occur at the same EDP magnitude. A Damage
State Group (DSG) might have only a single DS in the simplest case.

	Parameters

	
	ID: int

	

	DS_set: DamageState array

	

	DS_set_kind: {‘single’, ‘mutually_exclusive’, ‘simultaneous’}

	Specifies the relationship among the DS in the set. When only one DS is
defined, use the ‘single’ option to improve calculation efficiency.
When multiple DS are present, the ‘mutually_exclusive’ option assumes
that the occurrence of one DS precludes the occurrence of another DS.
In such a case, the weights of the DS in the set shall sum up to 1.0.
In a ‘simultaneous’ case the DS are independent and unrelated. Hence,
they can occur at the same time and at least one of them has to occur.

	
class pelicun.model.PerformanceGroup(ID, location, quantity, fragility_functions, DSG_set, csg_weights=[1.0], direction=0)

	Bases: object

A group of similar components that experience the same demands.

FEMA P-58: Performance Groups (PGs) are a sub-categorization of fragility
groups. A performance group is a subset of fragility group components that
are subjected to the same demands (e.g. story drift, floor acceleration,
etc.).

In buildings, most performance groups shall be organized by story level.
There is no need to separate performance groups by direction, because the
direction of components within a group can be specified during definition,
and it will be taken into consideration in the analysis.

	Parameters

	
	ID: int

	

	location: int

	Identifies the location of the components that belong to the PG. In a
building, location shall typically refer to the story of the building.
The location assigned to each PG shall be in agreement with the
locations assigned to the Demand objects.

	quantity: RandomVariableSubset

	Specifies the quantity of components that belong to this PG.
Uncertainty in component quantities is considered by assigning a
random variable to this property.

	fragility_functions: FragilityFunction list

	Each fragility function describes the probability that the damage in
a subset of components will meet or exceed the damages described by
each damage state group in the DSG_set. Each is a multi-dimensional
function if there is more than one DSG. The number of functions shall
match the number of subsets defined by the csg_weights parameter.

	DSG_set: DamageStateGroup array

	A set of sequential Damage State Groups that describe the plausible set
of damage states of the components in the FG.

	csg_weights: float ndarray, optional, default: [1.0]

	Identifies subgroups of components within a PG, each of which have
perfectly correlated behavior. Correlation between the damage and
consequences among subgroups is controlled by the correlation
parameter of the FragilityGroup that the PG belongs to. Note that if
the components are assumed to have perfectly correlated behavior at the
PG level, assigning several subgroups to the PG is unnecessary. This
input shall be a list of weights that are applied to the quantity
of components to define the amount of components in each subgroup. The
sum of assigned weights shall be 1.0.

	directions: int ndarray, optional, default: [0]

	Identifies the direction of each subgroup of components within the PG.
The number of directions shall be identical to the number of
csg_weights assigned. In buildings, directions typically correspond to
the orientation of components in plane. Hence, using 0 or 1 to identify
‘X’ or ‘Y’ is recommended. These directions shall be in agreement with
the directions assigned to Demand objects.

Methods

	P_exc(EDP, DSG_ID)

	This is a convenience function that provides a shortcut to fragility_function.P_exc().

	
P_exc(EDP, DSG_ID)

	This is a convenience function that provides a shortcut to
fragility_function.P_exc(). It calculates the exceedance probability
of a given DSG conditioned on the provided EDP value(s). The fragility
functions assigned to the first subset are used for this calculation
because P_exc shall be identical among subsets.

	Parameters

	
	EDP: float scalar or ndarray

	Single EDP or numpy array of EDP values.

	DSG_ID: int

	Identifies the DSG of interest.

	Returns

	
	P_exc: float scalar or ndarray

	Exceedance probability of the given DSG at the EDP point(s).

	
class pelicun.model.FragilityGroup(ID, kind, demand_type, performance_groups, directional=True, correlation=True, demand_location_offset=0, incomplete=False, name='', description='')

	Bases: object

Groups a set of similar components from a loss-assessment perspective.

Characterizes a set of structural or non-structural components that have
similar construction characteristics, similar potential modes of damage,
similar probability of incurring those modes of damage, and similar
potential consequences resulting from their damage.

	Parameters

	
	ID: int

	

	kind: {‘structural’,’non-structural’}

	Defines the type of components in the Fragility Group (FG).

	demand_type: {‘PID’, ‘PFA’, ‘PSD’, ‘PSA’, ‘ePGA’, ‘PGD’}

	The type of Engineering Demand Parameter (EDP) that controls the damage
of the components in the FG. See Demand for acronym descriptions.

	performance_groups: PerformanceGroup array

	A list of performance groups that contain the components characterized
by the FG.

	directional: bool, optional, default: True

	Determines whether the components in the FG are sensitive to the
directionality of the EDP.

	correlation: bool, optional, default: True

	Determines whether the components within a Performance Group (PG) will
have correlated or uncorrelated damage. Correlated damage means that
all components will have the same damage state. In the uncorrelated
case, each component in the performance group will have its damage
state evaluated independently. Correlated damage reduces the required
computational effort for the calculation. Incorrect correlation
modeling will only slightly affect the mean estimates, but might
significantly change the dispersion of results.

	demand_location_offset: int, optional, default: 0

	Indicates if the location for the demand shall be different from the
location of the components. Damage to components of the ceiling, for
example, is controlled by demands on the floor above the one that the
components belong to. This can be indicated by setting the
demand_location_offset to 1 for such an FG.

	incomplete: bool, optional, default: False

	Indicates that the FG information is not complete and corresponding
results shall be treated with caution.

	name: str, optional, default: ‘’

	Provides a short description of the fragility group.

	description: str, optional, default: ‘’

	Provides a detailed description of the fragility group.

	Attributes

	
	description

	Return the fragility group description.

	name

	Return the name of the fragility group.

	
description

	Return the fragility group description.

	
name

	Return the name of the fragility group.

pelicun.uq module

This module defines constants, classes and methods for uncertainty
quantification in pelicun.

Contents

	RandomVariable(ID, dimension_tags[, …])

	Characterizes a Random Variable (RV) that represents a source of uncertainty in the calculation.

	RandomVariableSubset(RV, tags)

	Provides convenient access to a subset of components of a RandomVariable.

	tmvn_rvs(mu, COV[, lower, upper, size])

	Sample a truncated MVN distribution.

	mvn_orthotope_density(mu, COV[, lower, upper])

	Estimate the probability density within a hyperrectangle for an MVN distr.

	tmvn_MLE(samples[, tr_lower, tr_upper, …])

	Fit a truncated multivariate normal distribution to samples using MLE.

	
pelicun.uq.tmvn_rvs(mu, COV, lower=None, upper=None, size=1)

	Sample a truncated MVN distribution.

Truncation of the multivariate normal distribution is currently considered
through rejection sampling. The applicability of this method is limited by
the amount of probability density enclosed by the hyperrectangle defined by
the truncation limits. The lower that density is, the more samples will
need to be rejected which makes the method inefficient when the tails of
the MVN shall be sampled in high-dimensional space. Such cases can be
handled by a Gibbs sampler, which is a planned future feature of this
function.

	Parameters

	
	mu: float scalar or ndarray

	Mean(s) of the non-truncated distribution.

	COV: float ndarray

	Covariance matrix of the non-truncated distribution.

	lower: float vector, optional, default: None

	Lower bound(s) for the truncated distributions. A scalar value can be
used for a univariate case, while a list of bounds is expected in
multivariate cases. If the distribution is non-truncated from below
in a subset of the dimensions, assign an infinite value
(i.e. -numpy.inf) to those dimensions.

	upper: float vector, optional, default: None

	Upper bound(s) for the truncated distributions. A scalar value can be
used for a univariate case, while a list of bounds is expected in
multivariate cases. If the distribution is non-truncated from above
in a subset of the dimensions, assign an infinite value
(i.e. numpy.inf) to those dimensions.

	size: int

	Number of samples requested.

	Returns

	
	samples: float ndarray

	Samples generated from the truncated distribution.

	
pelicun.uq.mvn_orthotope_density(mu, COV, lower=None, upper=None)

	Estimate the probability density within a hyperrectangle for an MVN distr.

Use the method of Alan Genz (1992) to estimate the probability density
of a multivariate normal distribution within an n-orthotope (i.e.
hyperrectangle) defined by its lower and upper bounds. Limits can be
relaxed in any direction by assigning infinite bounds (i.e. numpy.inf).

	Parameters

	
	mu: float scalar or ndarray

	Mean(s) of the non-truncated distribution.

	COV: float ndarray

	Covariance matrix of the non-truncated distribution

	lower: float vector, optional, default: None

	Lower bound(s) for the truncated distributions. A scalar value can be
used for a univariate case, while a list of bounds is expected in
multivariate cases. If the distribution is non-truncated from below
in a subset of the dimensions, use either None or assign an infinite
value (i.e. -numpy.inf) to those dimensions.

	upper: float vector, optional, default: None

	Upper bound(s) for the truncated distributions. A scalar value can be
used for a univariate case, while a list of bounds is expected in
multivariate cases. If the distribution is non-truncated from above
in a subset of the dimensions, use either None or assign an infinite
value (i.e. numpy.inf) to those dimensions.

	Returns

	

	——-

	

	alpha: float

	Estimate of the probability density within the hyperrectangle

	eps_alpha: float

	Estimate of the error in alpha.

	
pelicun.uq.tmvn_MLE(samples, tr_lower=None, tr_upper=None, censored_count=0, det_lower=None, det_upper=None, alpha_lim=None)

	Fit a truncated multivariate normal distribution to samples using MLE.

The number of dimensions of the distribution function are inferred from the
shape of the sample data. Censoring is automatically considered if the
number of censored samples and the corresponding detection limits are
provided. Infinite or unspecified truncation limits lead to fitting a
non-truncated normal distribution in that dimension.

	Parameters

	
	samples: ndarray

	Raw data that serves as the basis of estimation. The number of samples
equals the number of columns and each row introduces a new feature. In
other words: a list of sample lists is expected where each sample list
is a collection of samples of one variable.

	tr_lower: float vector, optional, default: None

	Lower bound(s) for the truncated distributions. A scalar value can be
used for a univariate case, while a list of bounds is expected in
multivariate cases. If the distribution is non-truncated from below
in a subset of the dimensions, use either None or assign an infinite
value (i.e. -numpy.inf) to those dimensions.

	tr_upper: float vector, optional, default: None

	Upper bound(s) for the truncated distributions. A scalar value can be
used for a univariate case, while a list of bounds is expected in
multivariate cases. If the distribution is non-truncated from above
in a subset of the dimensions, use either None or assign an infinite
value (i.e. numpy.inf) to those dimensions.

	censored_count: int, optional, default: None

	The number of censored samples that are beyond the detection limits.
All samples outside the detection limits are aggregated into one set.
This works the same way in one and in multiple dimensions. Prescription
of specific censored sample counts for sub-regions of the input space
outside the detection limits is not supported.

	det_lower: float ndarray, optional, default: None

	Lower detection limit(s) for censored data. In multivariate cases the
limits need to be defined as a vector; a scalar value is sufficient in
a univariate case. If the data is not censored from below in a
particular dimension, assign None to that position of the ndarray.

	det_upper: float ndarray, optional, default: None

	Upper detection limit(s) for censored data. In multivariate cases the
limits need to be defined as a vector; a scalar value is sufficient in
a univariate case. If the data is not censored from above in a
particular dimension, assign None to that position of the ndarray.

	alpha_lim: float, optional, default:None

	Introduces a lower limit to the probability density within the
n-orthotope defined by the truncation limits. Assigning a reasonable
minimum (such as 1e-4) can be useful when the mean of the distribution
is several standard deviations from the truncation limits and the
sample size is small. Such cases without a limit often converge to
distant means with inflated variances. Besides being incorrect
estimates, those solutions only offer negligible reduction in the
negative log likelihood, while making subsequent sampling of the
truncated normal distribution very challenging.

	Returns

	
	mu: float scalar or ndarray

	Mean of the fitted probability distribution. A vector of means is
returned in a multivariate case.

	COV: float scalar or 2D ndarray

	Covariance matrix of the fitted probability distribution. A 2D square
ndarray is returned in a multi-dimensional case, while a single
variance (not standard deviation!) value is returned in a univariate
case.

	
class pelicun.uq.RandomVariable(ID, dimension_tags, raw_data=None, detection_limits=None, censored_count=None, distribution_kind=None, theta=None, COV=None, corr_ref='pre', p_set=None, truncation_limits=None)

	Bases: object

Characterizes a Random Variable (RV) that represents a source of
uncertainty in the calculation.

The uncertainty can be described either through raw data or through a
pre-defined distribution function. When using raw data, provide potentially
correlated raw samples in an 2 dimensional array. If the data is left or
right censored in any number of its dimensions, provide the list of
detection limits and the number of censored samples. No other information
is needed to define the object from raw data. Then, either resample the raw
data, or fit a prescribed distribution to the samples and sample from that
distribution later.

Alternatively, one can choose to prescribe a distribution type and its
parameters and sample from that distribution later.

	Parameters

	
	ID: int

	

	dimension_tags: str array

	A series of strings that identify the stochastic model parameters that
correspond to each dimension of the random variable. When the RV is one
dimensional, the dim_tag is a single string. In multi-dimensional
cases, the order of strings shall match the order of elements provided
as other inputs.

	raw_data: float scalar or ndarray, optional, default: None

	Samples of an uncertain variable. The samples can describe a
multi-dimensional random variable if they are arranged in a 2D ndarray.

	detection_limits: float ndarray, optional, default: None

	Defines the limits for censored data. The limits need to be defined in
a 2D ndarray that is structured as two vectors with N elements. The
vectors collect left and right limits for the N dimensions. If the data
is not censored in a particular direction, assign None to that position
of the ndarray. Replacing one of the vectors with None will assign no
censoring to all dimensions in that direction. The default value
corresponds to no censoring in either dimension.

	censored_count: int, optional, default: None

	The number of censored samples that are beyond the detection limits.
All samples outside the detection limits are aggregated into one set.
This works the same way in one and in multiple dimensions. Prescription
of censored sample counts for sub-regions of the input space outside
the detection limits is not yet supported. If such an approach is
desired, the censored raw data shall be used to fit a distribution in a
pre-processing step and the fitted distribution can be specified for
this random variable.

	distribution_kind: {‘normal’, ‘lognormal’, ‘multinomial’}, optional, default: None

	Defines the type of probability distribution when raw data is not
provided, but the distribution is directly specified. When part of the
data is normal in log space, while the other part is normal in linear
space, define a list of distribution tags such as [‘normal’, ‘normal’,
‘lognormal’]. Make sure that the covariance matrix is based on log
transformed data for the lognormally distributed variables! Mixing
normal distributions with multinomials is not supported.

	theta: float scalar or ndarray, optional, default: None

	Median of the probability distribution. A vector of medians is expected
in a multi-dimensional case.

	COV: float scalar or 2D ndarray, optional, default: None

	Covariance matrix of the random variable. In a multi-dimensional case
this parameter has to be a 2D square ndarray, and the number of its
rows has to be equal to the number of elements in the supplied theta
vector. In a one-dimensional case, a single value is expected that
equals the variance (not the standard deviation!) of the distribution.
The COV for lognormal variables is assumed to be specified in
logarithmic space.

	corr_ref: {‘pre’, ‘post’}, optional, default: ‘pre’

	Determines whether the correlations prescribed by the covariance matrix
refer to the distribution functions before or after truncation. The
default ‘pre’ setting assumes that pre-truncation correlations are
prescribed and creates a multivariate normal distribution using the
COV matrix. That distribution is truncated according to the prescribed
truncation limits. The other option assumes that post-truncation
correlations are prescribed. The post-truncation distribution
is not multivariate normal in general. Currently we use a Gaussian
copula to describe the dependence between the truncated variables.
Similarly to other characteristics, the corr_ref can be defined as a
single string, or a vector of strings. The former assigns the same
option to all dimensions, while the latter allows for more flexible
assignment by setting the corr_ref for each dimension individually.

	p_set: float vector, optional, default: None

	Probabilities of a finite set of events described by a multinomial
distribution. The RV will have binomial distribution if only one
element is provided in this vector. The number of events equals the
number of vector elements if their probabilities sum up to 1.0. If the
sum is less than 1.0, then an additional event is assumed with the
remaining probability of occurrence assigned to it. The sum of
event probabilities shall never be more than 1.0.

	truncation_limits: float ndarray, optional, default: None

	Defines the limits for truncated distributions. The limits need to be
defined in a 2D ndarray that is structured as two vectors with N
elements. The vectors collect left and right limits for the N
dimensions. If the distribution is not truncated in a particular
direction, assign None to that position of the ndarray. Replacing one
of the vectors with None will assign no truncation to all dimensions
in that direction. The default value corresponds to no truncation in
either dimension.

	Attributes

	
	COV

	Return the covariance matrix of the probability distribution.

	censored_count

	Return the number of samples beyond the detection limits.

	det_lower

	Return the lower detection limit(s) corresponding to the raw data in either linear or log space according to the distribution.

	det_upper

	Return the upper detection limit(s) corresponding to the raw data in either linear or log space according to the distribution.

	detection_limits

	Return the detection limits corresponding to the raw data in linear space.

	dimension_tags

	Return the tags corresponding to the dimensions of the variable.

	mu

	Return the mean value(s) of the probability distribution.

	samples

	Return the pre-generated samples from the distribution.

	theta

	Return the median value(s) of the probability distribution.

	tr_limits_post

	Return the post truncation limits of the probability distribution in linear space.

	tr_limits_pre

	Return the pre truncation limits of the probability distribution in linear space.

	tr_lower_post

	Return the lower post truncation limit(s) corresponding to the distribution in either linear or log space according to the distribution.

	tr_lower_pre

	Return the lower pre truncation limit(s) corresponding to the distribution in either linear or log space according to the distribution.

	tr_upper_post

	Return the upper post truncation limit(s) corresponding to the distribution in either linear or log space according to the distribution.

	tr_upper_pre

	Return the upper pre truncation limit(s) corresponding to the distribution in either linear or log space according to the distribution.

Methods

	fit_distribution(distribution_kind[, …])

	Estimate the parameters of a probability distribution from raw data.

	orthotope_density([lower, upper])

	Estimate the probability density within an orthotope for a TMVN distr.

	sample_distribution(sample_size)

	Sample the probability distribution assigned to the random variable.

	
theta

	Return the median value(s) of the probability distribution.

	
mu

	Return the mean value(s) of the probability distribution. Note that
the mean value is in log space for lognormal distributions.

	
COV

	Return the covariance matrix of the probability distribution.

	
dimension_tags

	Return the tags corresponding to the dimensions of the variable.

	
detection_limits

	Return the detection limits corresponding to the raw data in linear
space.

	
det_lower

	Return the lower detection limit(s) corresponding to the raw data in
either linear or log space according to the distribution.

	
det_upper

	Return the upper detection limit(s) corresponding to the raw data in
either linear or log space according to the distribution.

	
tr_limits_pre

	Return the pre truncation limits of the probability distribution in
linear space.

	
tr_limits_post

	Return the post truncation limits of the probability distribution in
linear space.

	
tr_lower_pre

	Return the lower pre truncation limit(s) corresponding to the
distribution in either linear or log space according to the
distribution.

	
tr_upper_pre

	Return the upper pre truncation limit(s) corresponding to the
distribution in either linear or log space according to the
distribution.

	
tr_lower_post

	Return the lower post truncation limit(s) corresponding to the
distribution in either linear or log space according to the
distribution.

	
tr_upper_post

	Return the upper post truncation limit(s) corresponding to the
distribution in either linear or log space according to the
distribution.

	
censored_count

	Return the number of samples beyond the detection limits.

	
samples

	Return the pre-generated samples from the distribution.

	
fit_distribution(distribution_kind, truncation_limits=None)

	Estimate the parameters of a probability distribution from raw data.

Parameter estimates are calculated using maximum likelihood estimation.
If the data spans multiple dimensions, the estimates will also describe
a multi-dimensional distribution automatically. Data censoring is also
automatically taken into consideration following the detection limits
specified previously for the random variable. Truncated target
distributions can be specified through the truncation limits. The
specified truncation limits are applied after the correlations are set.
In other words, the corr_ref proprety of the RV is set to ‘pre’ when
fitting a distribution.

Besides returning the parameter estimates, their values are also stored
as theta and COV attributes of the RandomVariable object for future
use.

	Parameters

	
	distribution_kind: {‘normal’, ‘lognormal’} or a list of those

	Specifies the type of the probability distribution that is fit to
the raw data. When part of the data is normal in log space, while
the other part is normal in linear space, define a list of
distribution tags such as [‘normal’, ‘normal’, ‘lognormal’].

	truncation_limits: float ndarray, optional, default: None

	Defines the limits for truncated distributions. The limits need to
be defined in a 2D ndarray that is structured as two vectors with N
elements. The vectors collect left and right limits for the N
dimensions. If the distribution is not truncated in a particular
direction, assign None to that position of the ndarray. Replacing
one of the vectors with None will assign no truncation to all
dimensions in that direction. The default value corresponds to no
truncation in either dimension.

	Returns

	
	theta: float scalar or ndarray

	Median of the probability distribution. A vector of medians is
returned in a multi-dimensional case.

	COV: float scalar or 2D ndarray

	Covariance matrix of the probability distribution. A 2D square
ndarray is returned in a multi-dimensional case.

	
sample_distribution(sample_size)

	Sample the probability distribution assigned to the random variable.

Normal distributions (including truncated and/or multivariate normal
and lognormal) are sampled using the tmvn_rvs() method in this module.
If post-truncation correlations are set for a dimension, the
corresponding truncations are enforced after sampling by first applying
probability integral transformation to transform samples from the
non-truncated normal to standard uniform distribution, and then
applying inverse probability integral transformation to transform the
samples from standard uniform to the desired truncated normal
distribution. Multinomial distributions are sampled using the
multinomial method in scipy. The samples are returned and also stored
in the sample attribute of the RV.

	Parameters

	
	sample_size: int

	Number of samples requested.

	Returns

	
	samples: DataFrame

	Samples generated from the distribution. Columns correspond to the
dimension tags that identify the variables.

	
orthotope_density(lower=None, upper=None)

	Estimate the probability density within an orthotope for a TMVN distr.

Use the mvn_orthotope_density function in this module for the
calculation. Pre-defined truncation limits for the RV are automatically
taken into consideration. Limits for lognormal distributions shall be
provided in linear space - the conversion is performed by the algorithm
automatically. Pre- and post-truncation correlation is also considered
automatically.

	Parameters

	
	lower: float vector, optional, default: None

	Lower bound(s) of the orthotope. A scalar value can be used for a
univariate RV; a list of bounds is expected in multivariate cases.
If the orthotope is not bounded from below in any dimension, use
either ‘None’ or assign an infinite value (i.e. -numpy.inf) to
that dimension.

	upper: float vector, optional, default: None

	Upper bound(s) of the orthotope. A scalar value can be used for a
univariate RV; a list of bounds is expected in multivariate cases.
If the orthotope is not bounded from above in any dimension, use
either ‘None’ or assign an infinite value (i.e. numpy.inf) to
that dimension.

	Returns

	
	alpha: float

	Estimate of the probability density within the orthotope.

	eps_alpha: float

	Estimate of the error in alpha.

	
class pelicun.uq.RandomVariableSubset(RV, tags)

	Bases: object

Provides convenient access to a subset of components of a RandomVariable.

This object is useful when working with multivariate RVs, but it is used in
all cases to provide a general approach.

	Parameters

	
	RV: RandomVariable

	The potentially multivariate random variable that is accessed through
this object.

	tags: str or list of str

	A string or list of strings that identify the subset of component we
are interested in. These strings shall be among the dimension_tags of
the RV.

	Attributes

	
	samples

	Return the pre-generated samples of the selected component from the RV distribution.

	tags

	Return the tags corresponding to the components in the RV subset.

Methods

	orthotope_density([lower, upper])

	Return the density within the orthotope in the marginal pdf of the RVS.

	sample_distribution(sample_size)

	Sample the probability distribution assigned to the connected RV.

	
tags

	Return the tags corresponding to the components in the RV subset.

	
samples

	Return the pre-generated samples of the selected component from the
RV distribution.

	
sample_distribution(sample_size)

	Sample the probability distribution assigned to the connected RV.

Note that this function will sample the potentially multivariate
distribution.

	Parameters

	
	sample_size: int

	Number of samples requested.

	Returns

	
	samples: DataFrame

	Samples of the selected component generated from the distribution.

	
orthotope_density(lower=None, upper=None)

	Return the density within the orthotope in the marginal pdf of the RVS.

The function considers the influence of every dependent variable in the
RV on the marginal pdf of the RVS. Note that such influence only occurs
when the RV is a truncated distribution and at least two variables are
dependent. Pre- and post-truncation correlation is considered
automatically.

	Parameters

	
	lower: float vector, optional, default: None

	Lower bound(s) of the orthotope. A scalar value can be used for a
univariate RVS; a list of bounds is expected in multivariate cases.
If the orthotope is not bounded from below in any dimension, use
either ‘None’ or assign an infinite value (i.e. -numpy.inf) to
that dimension.

	upper: float vector, optional, default: None

	Upper bound(s) of the orthotope. A scalar value can be used for a
univariate RVS; a list of bounds is expected in multivariate cases.
If the orthotope is not bounded from above in any dimension, use
either ‘None’ or assign an infinite value (i.e. numpy.inf) to
that dimension.

	Returns

	
	alpha: float

	Estimate of the probability density within the orthotope.

	eps_alpha: float

	Estimate of the error in alpha.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pelicun	

 	
 	
 pelicun.base	

 	
 	
 pelicun.control	

 	
 	
 pelicun.file_io	

 	
 	
 pelicun.model	

 	
 	
 pelicun.uq	

Index

 A
 | B
 | C
 | D
 | F
 | H
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	aggregate_results() (pelicun.control.FEMA_P58_Assessment method)

 	(pelicun.control.HAZUS_Assessment method)

 	
 	Assessment (class in pelicun.control)

B

 	
 	beta_additional (pelicun.control.Assessment attribute)

C

 	
 	calculate_damage() (pelicun.control.Assessment method)

 	(pelicun.control.FEMA_P58_Assessment method)

 	(pelicun.control.HAZUS_Assessment method)

 	calculate_losses() (pelicun.control.Assessment method)

 	(pelicun.control.FEMA_P58_Assessment method)

 	(pelicun.control.HAZUS_Assessment method)

 	
 	censored_count (pelicun.uq.RandomVariable attribute)

 	ConsequenceFunction (class in pelicun.model)

 	convert_P58_data_to_json() (in module pelicun.file_io)

 	COV (pelicun.uq.RandomVariable attribute)

 	create_HAZUS_json_files() (in module pelicun.file_io)

D

 	
 	DamageState (class in pelicun.model)

 	DamageStateGroup (class in pelicun.model)

 	define_loss_model() (pelicun.control.Assessment method)

 	(pelicun.control.FEMA_P58_Assessment method)

 	(pelicun.control.HAZUS_Assessment method)

 	define_random_variables() (pelicun.control.Assessment method)

 	(pelicun.control.FEMA_P58_Assessment method)

 	(pelicun.control.HAZUS_Assessment method)

 	
 	description (pelicun.model.DamageState attribute)

 	(pelicun.model.FragilityGroup attribute)

 	det_lower (pelicun.uq.RandomVariable attribute)

 	det_upper (pelicun.uq.RandomVariable attribute)

 	detection_limits (pelicun.uq.RandomVariable attribute)

 	dimension_tags (pelicun.uq.RandomVariable attribute)

 	DSG_given_EDP() (pelicun.model.FragilityFunction method)

F

 	
 	FEMA_P58_Assessment (class in pelicun.control)

 	fit_distribution() (pelicun.uq.RandomVariable method)

 	
 	FragilityFunction (class in pelicun.model)

 	FragilityGroup (class in pelicun.model)

H

 	
 	HAZUS_Assessment (class in pelicun.control)

M

 	
 	median() (pelicun.model.ConsequenceFunction method)

 	
 	mu (pelicun.uq.RandomVariable attribute)

 	mvn_orthotope_density() (in module pelicun.uq)

N

 	
 	name (pelicun.model.FragilityGroup attribute)

O

 	
 	orthotope_density() (pelicun.uq.RandomVariable method)

 	(pelicun.uq.RandomVariableSubset method)

P

 	
 	P_exc() (pelicun.model.FragilityFunction method)

 	(pelicun.model.PerformanceGroup method)

 	pelicun (module)

 	pelicun.base (module)

 	pelicun.control (module)

 	
 	pelicun.file_io (module)

 	pelicun.model (module)

 	pelicun.uq (module)

 	PerformanceGroup (class in pelicun.model)

 	prep_bounded_linear_median_DV() (in module pelicun.model)

 	prep_constant_median_DV() (in module pelicun.model)

R

 	
 	RandomVariable (class in pelicun.uq)

 	RandomVariableSubset (class in pelicun.uq)

 	read_component_DL_data() (in module pelicun.file_io)

 	read_inputs() (pelicun.control.Assessment method)

 	(pelicun.control.FEMA_P58_Assessment method)

 	(pelicun.control.HAZUS_Assessment method)

 	
 	read_population_distribution() (in module pelicun.file_io)

 	read_SimCenter_DL_input() (in module pelicun.file_io)

 	read_SimCenter_EDP_input() (in module pelicun.file_io)

 	red_tag_dmg_limit() (pelicun.model.DamageState method)

S

 	
 	sample_distribution() (pelicun.uq.RandomVariable method)

 	(pelicun.uq.RandomVariableSubset method)

 	
 	sample_unit_DV() (pelicun.model.ConsequenceFunction method)

 	samples (pelicun.uq.RandomVariable attribute)

 	(pelicun.uq.RandomVariableSubset attribute)

T

 	
 	tags (pelicun.uq.RandomVariableSubset attribute)

 	theta (pelicun.uq.RandomVariable attribute)

 	tmvn_MLE() (in module pelicun.uq)

 	tmvn_rvs() (in module pelicun.uq)

 	tr_limits_post (pelicun.uq.RandomVariable attribute)

 	
 	tr_limits_pre (pelicun.uq.RandomVariable attribute)

 	tr_lower_post (pelicun.uq.RandomVariable attribute)

 	tr_lower_pre (pelicun.uq.RandomVariable attribute)

 	tr_upper_post (pelicun.uq.RandomVariable attribute)

 	tr_upper_pre (pelicun.uq.RandomVariable attribute)

U

 	
 	unit_injuries() (pelicun.model.DamageState method)

 	
 	unit_reconstruction_time() (pelicun.model.DamageState method)

 	unit_repair_cost() (pelicun.model.DamageState method)

W

 	
 	weight (pelicun.model.DamageState attribute)

 	
 	write_outputs() (pelicun.control.Assessment method)

 	(pelicun.control.FEMA_P58_Assessment method)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 License

 		
 Overview

 		
 Installation

 		
 Requirements

 		
 Features

 		
 Releases

 		
 Copyright and license

 		
 Copyright

 		
 BSD 3-Caluse license

 		
 API documentation

 		
 Modules

 		
 base

 		
 control

 		
 file_io

 		
 model

 		
 uq

